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FOREWORD 

This report was prepared by personnel in the Engineering Sciences 

Section of the Lockheed Missiles & Space Company, Inc., Huntsville Research 

& Engineering Center, Huntsville, Alabama,for the Air Force Flight Dynamics 

Laboratory, Wright-Patter son Air Force Base, Ohio.   The computer programs 

were developed under Project 1370, "Dynamic Problems in Flight Vehicles," 

Task 137004, "Design Analysis," Contract F33615-75-C-3125.    Capt. Gerald 

Van Keuren, AFFDL/FBR, is the Air Force Project Engineer. 

S.T.K. Chan was the principal investigator for the study, and H.C. 

Chen, as co-investigator, contributed to the development of the numerical 

solution method and developed most of the necessary computer programs. 

The study was conducted under the supervision of M.R. Brashears and later 

B.H. Shirley. 

The authors submitted this report in March  1976 as an AFFDL technical 

report to cover research performed from July  1975 to March  1976.     This re- 

port contains the pertinent theory and numerical solution method, based on 

which a computer program was developed and documented as AFFDL/TR-76- 

49, Vol.11. 
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SECTION I 

INTRODUCTION 

In recent years, significant progress has been made toward developing 

a useful method for predicting  steady transonic airloads over airfoils and to 

some degree for   finite wings.    Despite this progress, however, very few 

satisfactory methods exist for calculating unsteady transonic flows, as evi- 

denced in a recent survey paper by Bland (Ref. 1).    Only recently have num- 

erical solutions   via  the   finite difference   relaxation  techniques   been 

presented for two-dimensional airfoils executing harmonic motion.    As an 

alternative solution technique, the authors have recently investigated the 

application of the finite element technique for solution of the transonic flow 

problem, and computed successfully transonic flow over nonlifting thin air- 

foils (Ref. 2).    Compared with the general finite difference relaxation tech- 

niques, the finite element method provides a more flexible mesh arrangement, 

element shape and size   to cope more effectively with complex geometry and 

boundary conditions.    Also, higher order approximations can be readily imple- 

mented to increase computational efficiency. 

In the present study,  the finite element technique is extended to com- 

pute lifting,   unsteady transonic flows over airfoils.    Since the objective of 

the present study is to develop an efficient and accurate numerical algorithm 

for the analysis of unsteady transonic flow over thin airfoils,  the present 

formulation is therefore based on the small disturbance but nonlinear tran- 

sonic  potential equation for inviscid,  compressible fluid.    Unlike most exist- 

ing techniques (Refs. 3 through 6) for solving the small disturbance potential 

equation,  the present approach is aimed at solving directly the unsteady 

transonic equation,  with both time derivative terms retained.    Thus the 

present algorithm can be applied to compute a much wider class of transonic 

flow problems,  including steady,  oscillatory or transient solutions,   either 

with or without angle of attack.     For oscillatory flow,   no assumption is made 

regarding the oscillating frequencies,  nor must the unsteady perturbation be 

small compared to the mean steady solution. 

1 
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On the numerical aspects, the present numerical algorithm is developed 

using the concept of finite elements in conjunction with the method of weighted 

residuals.    However, to treat properly the mixed flow behavior, the residuals 

are modified by introducing a "one-sided assembly" scheme in the supersonic 

region.    Also, a patching technique has been developed to match the finite 

element solution constructed in a moderately large domain with an asymptotic 

solution for the far field to avoid having to use a very large domain otherwise 

needed in computations.    The basic element presently used is a product of an 

element in space and an element in time.    The element in space has a cubic 

expansion inside the element, with nodal  unknowns   representing   the per- 

turbed velocity potential and the two perturbed velocity components; while the 

element in time is a quadratic  Lagrange element.    The resulting system of 

algebraic equations is banded, although nonsymmetric, which is solved con- 

veniently by Gaussian elimination. 

The computations of steady transonic flow over lifting airfoils are de- 

scribed in Section II, including relevant equations, the numerical approach and 

computed results.    Considered in Section III are the calculations of unsteady 

transonic flow, which indeed can be applied also to compute steady transonic 

flow.    The final section contains conclusions and recommendations for future 

studies. 
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SECTION II 

STEADY TRANSONIC FLOW OVER LIFTING A'PFOILS 

The small perturbation theory for steady transonic flow over lifting 

airfoils and the numerical approach for solving the nonlinear transonic 

equation are discussed in this section.    First, the theory including the small 

perturbation potential equation with associated boundary conditions, together 

with related secondary unknowns, are summanzed.    A finite element algo- 

rithm based on a modified least squares method of weighted residuals is 

then described regarding the finite element formulation, special considera- 

tions of supersonic regions, the imposition of boundary conditions, and itera- 

tive procedures used to solve the resulting system of nonlinear algebraic 

equations.    Finally, typical flow fields for a 6% thick circular arc and a 

NACA 64A 410 airfoil are computed to demonstrate the feasibility and appli- 

cability of the present approach. 

1.     ASSUMPTIONS AND BASIC EQUATIONS 

Since the objective of the present study is to compute transonic flows 

over thin airfoils, small disturbance theory is generally adequate and hence 

used as the basis of this numerical model.    With this theory, perturbation of 

the flow due to the presence of airfoils is assumed to be everywhere small, 

the embedded shock waves are assumed to be weak and boundary layer effects 

are neglected.   Also, the flow is assumed to be isentropic and inviscid. These 

assumptions lead to a nonlinear equation of mixed elliptic-hyperbolic type for 

general two-dimensional steady transonic flow problems. 

Differential Equation 

i - ivr 
oo 

M^ (1 +Y)*  x 00 , x 
4+4        = o 

♦ KX      ,yy 
(i) 

■ 
■   . 
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v - (1 +u) ^ * 0 dx on th«  airfoil (2) 

y ^    =   0        at infinii y (3) 

where ^   = perturbed velocity potential function, u, v = perturbed velocity 

components in the x- and y-directions, respectively, M     s freestream Mach 
00 

number, -y   = ratio of specific heais, taken to be  1.4 for air, and g  = function 

of x  defining the geometry of the airfoil including angle of atcack.    Equation (I) 

is in dimensionless form and the x-axis is aligned with the undisturbed flow 

direction.    The dimensional (with primes) and nondimensional quantities are 

related by 

x' y' r 
00 

where  c   and U     are the characteristic length and speed, which are currently 

taken as the chord length and the freestream speed, respectively. 

For flow over lifting airfoils, due to the presence of circulation,   the 

velocity potential function is not continuous but possesses a jump equal to the 

circulation strength.    For this reason, a branch cut must be made to allow 

the potential function to acquire a jump, but with continuous velocities. 

Therefore, along a branch cut, the following conditions must be imposed. 

r -«' = r 
+ u    - u =   0 

+ 
V       -   V =   0 

(4) 

in which " + " and "-" designate the upper and lower surfaces of the branch 

cut, and  T   represents the strength of circulation. 
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Once the flowfield solution    in terms of the perturbed velocity potential 

has been obtained, all secondary unknowns can then be calculated.    These 

include 
r .   /u vn1/2 

(5) a   = ra,„2 -v2) + i^ (U 
UO 

M=f (6) 

Zu 
U 

oc 

1  + 

+ (1 M2) 
00 

00 

>M2rT 

u2    u2 
2u 
U 

00 

(7) 

(8) 

In the above, U 

/ 

= 1, the normalized freestream speed, a = local speed of 
oo 

sound, M = local Mach number,   V = the flow speed, p =  local static pres- 

sure, p    = stagnation pressure, and C    = pressure coefficient. 

2.      NUMERICAL APPROACH 

The finite element method, in conjunction with the least squares method 

of weighted residuals, is used herein to solve numerically the small pertur- 

bation transonic equation.    Summarized in this subsection are the finite ele- 

ment formulation, considerations of the embedded supersonic regions, 

imposition of boundary conditions, and finally iterative procedures used to 

solve the resulting system of nonlinear algebraic equations.    The present 

numerical approach is a direct  extension of a previous study for transonic 

flow over nonlifting airfoils.    More detailed discussion is given in Ref. 7. 

-iilMKHt 
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I'inilo EK-menl   Formulation 

To solve the present problem by finite element methods in conjunction 

with the least  squares approach, a set of locally defined trial functions with 

undetermined parameters is first assumed as the approximate solution, and 

the integral expression for the square of errors committed by the approxi- 

mate solution is formulated.    Then the integral of square errors in the entire 

domain is minimized with respect to the undetermined parameters to yield a 

system of algebraic equations.    In actual computations, the minimization 

process is performed at element level and then an assembling process is 

invoked to obtain the system of algebraic equations. 

Written in the usual manner with repeated indices implying summation, 

the approximate solution has the following form 

^    = N 
i    i 

(9) 

in which N.'s represent the shape functions and ^.'s are the undetermined 
parameters at nodal points.    The reeidual then becomes 

R 1   [ 1  - M2    - M 
I 00 I l>^>N

k,Jc*k]Nj.«+ Nj,yy|*j    (10) 

from which an integral expression for the square errors is obtained as 

- # 
dA (ID 

Upon the minimization of X with respect to the undetermined parameters, a 

system of algebraic equations in the following form is obtained 

S.. ^     =   0 
M    j 

(12) 

.„.,..J,A.,.^.a^m„ 
^,      ::^ -   , __. ,:.,_.L..._,:^ :,:.,.,:,,, iiiMi^im..a^i 



,-___„,- «Pll|.lW|lU)IlXIMi   1.1.1     . N     ,     II     I  ■   ,1, .1 -w-w-ssa 

Herein the banded system matrix S. . is defined as 

S..    =    ffp. Q. dA 
J       JJ    l     i 

(13) 

with P. and Q. defined by the following expressions 

Q.    =    fl   -M2     - M2     (1+7) N,       *,   1   N. +   N. 
J I oo oo    v '     k,x rk J      j.xx j, yy 

(14) 

and 

P.    =   Q. M4-    (i + ym tf.   N. 
oo '     k,xx  Yk     i,x 

(15) 

As stated earlier, the system matrix is obtained by combining appropri- 

ate contributions from all the elements.    The element matrices, in turn, are 

evaluated effectively by numerical integration to avoid the tedious and error 

prone algebraic manipulations.    It is to be noted that although the system of 

equations, Eq. (12), is homogeneous, it does possess a non-trivial solution 

once the boundary conditions are imposed. 

The basic element used in the present program is the nonconforming 

cubic triangular element developed by Bazeley  et al.   (Ref. 8).    Also used in 

the program are quadrilateral and trapezoidal elements constructed from 

these triangular elements.    These three types of elements can be mixed and 

used freely in the entire flow region except that only trapezoids should be 

used to cover adequately the supersonic region in order to enact the special 

treatment discussed later. 

I 

The basic triangular element is shown in Fig, 1, which at each vertex 

has the function itself and its two first derivatives (velocity components) as 

undetermined parameters.    This type of element was adapted mainly because 

boundary conditions of both Dirichlet and Neumann types can be imposed with 

equal convenience.    In addition, because velocities at nodes are treated as 

primary unknowns, secondary unknowns such as local Mach number, and 
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Z    ^2,u2,v2) 

Fisure  1   - Triangular Element with Undetermined Parameters 

pressure coefficients, etc., can be computed directly without resorting to 

numerical differentiation, thus assuring higher accuracy. Furthermore, 

the use of higher order elements can usually improve computational effi- 

ciency as evidenced in most finite element analyses. 

As is known, the elements presently used are C    continuous only at 
,1 nodal points but not across element boundaries,   which apparently violates C' 

continuity between elements as normally required.    However, our experience 

as well as applications by others do not seem to indicate that such a require- 

ment is necessary, though it is obviously a sufficient condition for monotonic 

convergence as  the element mesh is refined.   For the problems of plate bending, 

it was concluded that the condition    ecessary to guarantee convergence is 

that the element used should be capable of representing constant curvatures 

(second derivatives) within the element, as evidenced by several cases of 

plate bending analysis (Ref. 8).    The inter-element continuity requirement 

for solving the present second order equation using least squares should be 

the same as that for solving a fourth order equation using the variational 

principle, as the integral forms for both problems involve up to second 

derivatives only.    In the present study, use has been made of these simpler 
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"non-conforming" elements and  results appear to be adequately accurate, 

it is to be emphasized that "conforming" elements (with continuous normal 

derivatives between elements) do exist and can be readily implemented.     With 

these elements,   however,   more sophisticated techniques for handling the dis- 

continuity along the path of shock wave may also become more desirable.     Some 

studies on the effects of "non-conforming" versus "conforming" elements ,   to- 

gether with more sophisticated schemes for handling shocks,  are indeed highly 

desirable and  useful. 

Considerations of Supersonic Regions 

As is well known, the finite element method is a powerful tool for solv- 

ing problems governed by elliptic equations.    However, for problems governed 

by either parabolic or hyperbolic equations, the conventional finite element 

assembly technique must be modified so that the proper influence of solution 

in time (or time-like direction) is considered.   For the present problem, the 

x-axis is the time-like direction which implies that the solution at the upwind 

station will determine the solution at its downwind station but not the contrary. 

This consideration leads to the well known upwind influence finite difference 

operator  (backward finite difference).   An equivalent technique in finite element 

analysis has been devised and applied to solve the transonic flow equation. 

Consider the rectangular element sketched below with upwind station I 

and downwind station II, each having two nodal points.   With the element type 

chosen, the element matrices can be constructed in the usual manner.   How- 

ever, before assembling the element matrices into the system matrix, the 

coefficient of the 

Flow Direction 

z._ 

I 

11 
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first term in the transonic equation should be evaluated 

C    =    1  - M2   - M2   (1 + y) u 
00 00 

(16) 

The sign of the coefficient   C   being posiitive, zero, or negative will define the 

equation as elliptic, parabolic or hyperbolic.    If  C   is non-positive for all 

nodes in the element, the rows representing the ;mproper downwind influence 

on the solution at an upwind station are   ignored during assembly.   This feature 

is taken care of automatically in the program, requiring only a little care with 

the nodal arrangement in the element.    In the anticipated supersonic region, 

element node points should be arranged in the order as indicated in the above 

sketch, starting with the upper left corner node and proceeding in a counter- 

clockwise direction.    On the other hand, if the sign of  C   is positive at any of 

the  four nodes, no special assembling is invoked.    As  stated earlier, only 

trapezoidal elements are to be used in the anticipated supersonic and mixed 

flow region, while triangular elements and quadrilaterals consisting of only 

two triangles are considered unsuitable because of their bias nature.    How- 

ever, these two latter types of elements can be  used effectively in the subsonic 

flow region. 

i 

Imposition of Boundary Conditions 

As stated earlier, the imposition of boundary conditions for the present 

problem can be carried out conveniently because the elements presently used 

have the function value and the two first derivatives as primary unknowns.   The 

associated boundary conditions thus can be treated as the essential t ype, i.e., 

having prescribed values.    Standard finite element methodology is therefore 

followed by assembling first an unconstrained problem and then modifying the 

matrix equations accordingly. 

On the airfoil, the nonlinear form of flow tangency on the airfoil is im- 

posed by replacing the algebraic equation for v. by 

v. 
i 

.dgLu    -   dg. 
dx    i        dx (17) 
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in which u. and v. are unknown parameters at node "i" on the airfoil.    When 
i i r 

the linear form is desired, the corresponding equation becomes 

v. dx 
(18) 

and is applied along the chordline. 

For the far field boundary condition, Eq. (3) is valid only at infinity, 

and thus an infinite domain is required in computations if the condition is to 

be imposed directly.    Although an approximation can be made by assuming Eq. (3) 

to be valid on a boundary at a finite distance from the airfoil, a large computa- 

tional network is usually required to obtain a solution with adequate accuracy 

due to the fact that for lifting airfoils at transonic speeds, the disturbances 

created by the body decay very slowly.    There are several ways to cope 

with this problem so that computations can be restricted to a finite region. 

One approach is to map the region exterior to the airfoil into the interior of 

a circle upon which the computations are performed and the final solution is   ob- 

tained by a subsequent inversion (Ref. 9).    This technique is almost ideal for 

computations involving a single airoil, but its extension to three-dimensional 

cases or flow over multiple airfoils is not evident.    Another approach is to 

match the numerical solution of the near field with an analytic representation 

for the far field to satisfy, in effect, the far field boundary conditions, as em- 

ployed in finite difference relaxation techniques (Refs. 10 and 11).    In doing so, 

computations can be performed in the physical plane by using a finite domain 

without sacrificing too much accuracy and more importantly, it provides a 

straightforward extension to treat three-dimensional and multiple airfoil 

problems.    This concept is pursued with appropriate modifications in the 

present finite element solution technique so that the circulation and hence 

lifting force is computed by a systematic approach. 

Figure 2 depicts a lifting airfoil under free-flight conditions.    In the 

analysis, a moderately large domain, R',   is taken to construct the finite ele- 

ment solution, while an asymptotic solution with undetermined parameters 

11 
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R": Far-Field Solution 

U 

S, : Matching of Solutions 

Figure 2  - Matching of Localized  Finite Element Solution 
with Far-Field Solution 
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is assumed to be valid in the far field, R." The two solutions are then matched 

along the common boundary,   S,, along which the unknowns are then expressed 

in terms of the far-field undetermined parameters.   Along the branch cut,  S,, the 

conditions of the velocity being continuous but the   velocity potential possessing 

a jump equal to the circulation, T, are imposed iteratively.   Through these 

procedures, the far-field parameters will be determined systematically rather 

than merely by trial and error. 

The far-field potentials for both lifting airfoils and three-dimensional 

wings at transonic speeds were developed by Klunker (Ref. 12).   The expression 

for a two-dimensional airfoil is currently used and has the following form 

frP   x2 + ßV./c 

,  ^(l+y)   f    z (x.a) 

(x.e)2 + ß2 (y-Ti)2 
dA 

(19) 

The first term on the right-hand side corresponds to a free vortex and repre- 

sents the lifting effects; the second term corresponds to a source distribution 

whose strength is related to the airfoil geometry g(x); and the third term, 

which arises from the nonlinearity of the flow equations, has the form of a 
2 

doublet with its strength given by the local value of u    and is to be integrated 

over the flow domain under consideration.    Klunker also showed that the 

contributions from the thickness and the area integrals are of higher order 

effects.    For these reasons, only the first term representing the lifting effects 

is used currently for the far field.    The solution along the outer boundary S.   is 

updated systematically, using the computed potential jump at the trailing edge. 

13 
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The boundary condition,  L'q. (4), along the branch cut can be considered 

as constraints to the unknown parameters.    These constraints can  be imposed 

through introducing  Lagrangian multipliers.    As an alternative, a scheme 

without the need of introducing  Lagrangian multipliers was devised and im- 

plemented.    The scheme is essentially based on the concept of using chain 

rule in minimizing the integral of square errors.    More specifically, the 

algebraic equations are first generated assuming no constraint on the original 

parameters.    However, because of constraint on certain unknown parameters, 

the algebraic equations corresponding to constrained parameters are then 

manipulated according to chain rule and the specific constraint to yield one 

equation less for each constraint.    And finally, one unknown parameter could 

be eliminated for each constraint, thus making the total number of equations 

and unknowns equal.    A variation of this scheme is to insert, in place of the 

equation eliminated, the constraint and leave the total number of unknown 

parameters unchanged.    The latter approach has the advantage of simpler 

bookkeeping and was therefore implemented in the computer program.    For 

example, to impose the condition u    = u    for a pair of nodes along the branch 

cut, the equation originally generated for u    is first added to the equation for 

u   ,   and then in its place the constraint equation u    - u    = 0 is inserted. 

Iterative Procedures 

With the equations properly assembled and boundary conditions imposed, 

the system of nonlinear algebraic equations is finally solved by iterative pro- 

cedures of the form 

S. . (^) ^.n)   =   L. (20) 

to solve for the solution ^  ' at the n     iteration.    The function  4>  is,   in turn, 

defined as 

^ =. e^-^ + d .Q)t{n-l) (21) 
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in which  9  is a relaxation factor in the range 0 < 9 <1.    For subsonic flow, 

9   is usually taken as unity;  for flow  in the transonic regime, however, it has 

been found that the use of an under-relaxation factor is required.    The value of 

9   should decrease from unity for barely critical flow to 9.4 or even 9.3 for 

supercritical flow.    The optimum under-relaxation factor generally depends 

on the freestream Mach number and the mesh being used.    At the present, no 

systematic investigations have been done in this regard, and therefore its value 

should be selected by numerical experimentations.    Generally speaking, a 

smaller under-relaxation factor will make the solution more stable but at the 

same time tends to slow the rate of convergence. 

Equation (29) is to be solved subject to certain prescribed convergence 

criteria.    The one presently used is that the relative change   of local Mach 

number between two consecutive iterations should be less than a prescribed 

small number for all the nodes in the flow field, that is 

M in) M (n-l) 

M (n) <  e (22) 

The value of e in most    umerical computations is in the range 9.991 <  f < 

9.995. 

The numerical procedures can thus be summarized as the following: 

1. Construct finite element algebraic equations for the inner field 
based on the method of weighted residuals, presently with the 
least squares approach with modifications made in supersonic regions 

2. Apply boundary condition on the airfoil to satisfy flow tangency 
condition at nodal points. 

3. Impose the continuity of velocity components along the branch 
cut as described earlier, 

4. Specify the parameters along the common boundary of inner and 
outer field in terms of the value of circulation strength. 

15 
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5, Solve lor tlie How field and honcc the jump in potential at the 
trailing edge, which is then used as an improved solution in 
updating the finite element algebraic equations and the circula- 
tion along the outer boundary, respectively. 

6. Repeat tne above procedures until a convergent solution is ob- 
tained,  such as until the relative change of Mach number falls 
within a small range of tolerance or the jump in potential function 
across the branch cut is essentially a constant. 

3.      NUMERICAL RESULTS 

To demonstrate the applicability of the present approach, flow fields 

over a 6% thick circular arc and a NACA 64 A4 10 airfoil have been computed. 

Results obtained by the present approach appear to compare, in general, very 

well with experimental data and those obtained by relaxation techniques, while 

each case calculated requires only a few minutes of CPU time on a Univac 

1 108 computer. 

For the 6% thick circular arc, calculations were made for cases with 

angli    of attack  equal to   1 and 2 deg.    The mesh presently  used is shown 

in   Fig, 3,   with 202 nodes.    As   is   seen  in the figure, the mesh arrange- 

ment is completely flexible, except in the expected supersonic region where 

i rather regular mesh is needed in order to consider properly the problem of 

region of dependence.    The predicted results for the two cases are shown in 

Figs. 4 and 5, respectively, where comparisons are made with experimental 

data obtained by Knechtel (Ref. 13).  It is seen that the agreement between the 

predicted results and experimental data is excellent except near the leading 

and trailing edges.    These noticeable discrepancies are believed mainly due 

to the invalidity of the small perturbation equation in these regions.     In 

addition, the present computations are based on inviscid theory, while experi- 

mental results necessarily involve viscous effect, which were evidenced in the 

form of negative aerodynamic loadings over the rear portion of tha airfoil. 

For these reasons, the predicted results are considered to be sufficiently 

accurate.    Among all of the cases calculated, the greatest difference appears 
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Figure 3 - Finite Element Mesh Layout (173 Elements,  202 Nodes) 
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Figure 4 - Comparison of Chordwise Pressure Distribution for a 6% Thick 
Circular-Arc Airfoil (a = 1 deg) 
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Experiment             ( ' 
(Knechtel,  1959)   j  

Present Method    I 
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Upper Surface 

Lower Surface 
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Lower Surface 

Figure 5 - Comparison of Chordwise Pressure Distribution 
for a 6% Thick Circular-Arc Airfoil (a = 2 deg) 
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to be near the   leading edge for the critical case (a = 2  ,   M     = 0.855),   where 

a large peak pressure is present in the experiment.    However, as other 

cases of lower and higher Mach numbers do not indicate such large peak 

pressure near the leading edge (see Fig.7e of Ref. 13), the peaky behavior 

for the present case is somewhat peculiar and questionable. 

To test the present approach further,   the flow field over a NACA  64 

A4 10 airfoil was also computed.     This airfoil was chosen as another testing 

case mainly for two reasons:    (1) the airfoil is thicker (with 10% thickness 

ratio) and blunt-nosed,  thus it represents a more severe test for the present 

method; and (Z) the airfoil has been studied rather extensively and both ex- 

perimental and numerical data are available for comparisons (see Ref.  11). 

To date,   only limited computations have been performed.    Preliminary re- 

sults are depicted in Figs. 6, 7 and 8 for cases involving various Mach numbers, 

either with or without angle of attack.    As the present airfoil has a blunt 

leading edge,   the boundary condition in that region cannot be imposed in the 

usual manner by specifying the vertical velocity component as v = dg/dx = oo. 

Several numerical experiments have been conducted to cope with these diffi- 

culties.    One of the atternpts is to specify the normal derivative of the   per- 

turbed velocity potential.    The value of the normal derivative,   in turn,   can 

be determined explicitly from the flow tangency condition.    To accomplish 

this   in the   numerical comp>utations,  the normal and tangential derivatives 

of the potential function are used as unknowns at the leading edge,  instead of 

the derivatives originally in the x- and y-directions.    Thus the normal de- 

rivative of the perturbation   potential can be conveniently specified.    These 

thoughts have been  implemented into the program.    However,  our numerical 

experimentation indicates that the imposition of a full amount of perturbed 

normal velocity as computed from flow tangency condition (without invoking 

the small perturbation assumption) does not produce satisfactory results near 

the leading edge,  with the flow in that region being impeded excessibly.    The 

inaccuracy of the solution in this region is believed partly due to the mesh being 
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Figure 6 - Comparison of Chordwise Pressure Distribution for NACA 
64 A410 Airfoil (a = 0 deg) 
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Figure 8 - Comparison of Chordwise Pressure Distribution for NACA 64 A4 10 
Airfoil (MQO = 0.70,  a = 2 deg) by Specifying  Finite Slopes at the 
Leading  Edge 
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too coarse and partly due to the fact that the boundary condition used does 

not match the small disturbance equation there.    In an attempt to make the 

boundary condition at the  leading edge compatible with the small perturbation 

equation which is assumed to be valid there, numerical experimentations were 

performed by specifying only a fraction of the perturbed velocity in the normal 

direction, with results depicted in Figs. 6 and 7.    Method I  corresponds  to 

one-fourth of the normal velocity otherwise required, while Method  II  has a 

zero normal perturbed velocity specified.    As is seen, the pressure distri- 

bution near the leading edge is quite sensitive to the boundary condition im- 

posed there; however, the comparison for the remaining portion of the airfoil 

is very good.    Another attempt is to use finite values of slope for the nodal 

points at the leading edge and impose the flow tangency condition as required 

by Eq. (17).    Figure 8 presents results obtained by using at the leading edge 

half the value of the airfoil slopes at 0.5%.    Compared with the predicted re- 

sults shown in Fig. 7, some improvement near the leading edge is apparent, 

but the expansion on the upper surface is still not properly simulated.  Never- 

theless, as seen in the figures the inaccuracy near the leading edge is local- 

ized and is always confined to the first few nodal points.    The solution accuracy 

could be improved within the small disturbance assumption to a certain extent 

by refining the mesh near the leading edge.    However, because the core storage 

capacity normally available on the local Univac  1108 computer is only 64K, 

some additional programming effort is required in order to compute the prob- 

lem with a much finer mesh; therefore, only results with the present mesh are 

presented. 
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SECTION III 

UNSTEADY TRANSONIC FLOW 

In this section, finite element procedures are described for solving 

the problems of unsteady transonic flow.    Again, the formulation is based on 

small perturbation theory.    However, unlike the approach developed earlier 

for NASA-Langley (Ref. 6), the assumptions of harmonic motion and the un 

steady disturbance being small compared to the mean steady solution are 

removed in the present approach.     The removal of these assumptions   allows 

the flow field to be computed in a wider range.    These include the problems 

involving transient solution, moderate unsteadiness and, more importantly, 

movement of shock wave location.    The equations, upon which the present 

numerical procedures are constructed, are summarized in Subsection 1,   Two 

numerical approaches, namely, the Galerkin type and least squares method, 

which have been investigated to integrate directly the unsteady transonic equa- 

tion, are described in Subsection 2.    As a result of the present investigation, 

the  Galerkin  method  of weighted  residuals  was   found to  be  invalid  for 

computing  supercritical flow, thus the least squares approach has been pur- 

sued.    To date, only limited computations have been conducted using the least 

squares approach; however, results obtained thus far indicate the present ap- 

proach is, in general, very satisfactory.    Typical results are summarized 

and discussed in Subsection 3. 

1.     BASIC EQUATIONS 

Based on small perturbation theory, the unsteady transonic flow prob- 

lem can be stated as 

M*)   =   a0(XX+^yy-2M2^xt.M2^tt   =   0 (23) 

in which 

a   =   a + b ^ 
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with 
a    =    1  - M 

UO 

M     (1 + y) 
oo 

The boundary conditions associated with Eq, (23) include: 

(I     Vanishing of Disturbance at the Far Field, 

V*    =   0 (24) 

Flow Tangency Condition on the Airfoil Surface, 

DB 
Dt 

B+(l+^      )B       +4       B =0 .t r,x'     ,x      r,y     ,y 

with B  describing the instantaneous airfoil position as 

B(x,y,t)   =   y - g(x) - 6h(x,t)    =   0 

In the above, g(x) = geometry of the airfoil at mean steady position,   6 = ampli' 

tude of oscillation, and h(x,t) = function describing the airfoil oscillation. 

Upon substitution, a nonlinear boundary condition is obtained as 

*.y  =  6(h.x+V+8.x(1 + ^ (25) 

Which is to be imposed on the mean position of the oscillating airfoil, i.e., 

B(x, y,t ) = 0. '    mean 

Unsteady Kutta Condition in the Wake 

Along the wake, pressures and downwashes are equal on both sides of 

the vortex sheet.    Since the pressure coefficient is given, to the lowest order, 

as 
24-24-4" 
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the linearized boundary conditions in the wake thus become 

*>♦% = ♦.'t + G 
and 

,y .v 

(26) 

(27) 

which are to be applied along the upper and lower surfaces of the mean wake 

position.    The potential values on the upper and lower surfaces of the wake 

are related by 

i* = ^' +r (28) 

in which T = r(x,t) for unsteady flows.    With F as the primary unknown, the 

condition expressed by Eq. (26) can also be written as 

,t 
(26a) 

As discussed earlier, for lifting airfoil computations, the far field con- 

ditions must be considered properly.    To do this an asymptotic expression 

with undetermined parameters must be established and matched with the 

near-field finite element solution.    In the present study, only the asymptotic 

solution for mean steady flow has been established and implemented,   im- 

plying that the unsteady perturbation at far field is small compared to the 

mean steady solution. 
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2.     NUMERICAL APPROACHES 

The finite element technique, in conjunction with the Method of Weighted 

Residuals (MWR), is used to solve Eq. (23) with its associated boundary condi- 

tions.    The approaches undertaken include the Galerkin type and the least 

squares method.    At this stage, results indicate that the Galerkin approach 

can be used to compute flow in the subcritical regime but does not seem to 

be valid for calculating critical transonic flows.    The least squares approach, 

■ 
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on the other hand, appears to be satisfactory when critical flow is considered. 

These two approaches are described in the following. 

The Galerkin Approach 

The Galerkin approach was investigated during the earlier stage of this 

study as it can offer certain advantages over the least squares formulation, 

especially when the unsteady transonic equation is considered.    These include; 

1. The formulation by Galerkin criterion is noticeably simpler and 
will require less computation time. 

2. With appropriate integration by parts and arrangement, the con- 
tinuity requirement between elements can be lowered and boundary 
conditions can be treated more conveniently. 

With the Galerkin approach, an approximate solution for the velocity 

potential is first assumed in the form 

4> N.lx.y) *.(t)        (i = 1 ton) (29) 

in which N.  = shape functions, ^.  = the corresponding undetermined parameters, 

and n = total number of unknown parameters.    Equation (29) is then substituted 

into (23) and, with N. as weighting functions, the procedure of weighted residuals 

is applied in the spatial directions to obtain a system of Ordinary Differential 

Equations (ODE) in the form 

A., i. +B.. 4. + C.. &   =   0 (30) 

in which the coefficient matrices are banded and are functions of space only. 

To integrate Eq. (30), a Galerkin type time marching scheme is used to 

obtain a recurrence relationship which is implicit in nature.    For instance, 

with a quadratic expression for the time history of each nodal unknown one hau 

b.    =   M, (t) <(>. 
j kw yj 

(k = 1 to 3) (31) 
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in which M,   represents the shape functions in time.    Again, direct substitu^ 

tion and applying the method of weighted residuals (choosing M„ as the 

weighting function) with integration carried out in time will result in a re- 

currence equation in the form 

(a.   A.. + b.   B.. +c,   C.) 4>. (32) 

where the vectors au, bu, c^ are functions of time only.    Equation (32) can be 

rewritten as 
V    k'    k 

(a. A.. + b. B.. + c- C.) ^3   =-(a     A. . + b     A. . + c     C..)^m (33) v   3     ij        3     ij        3     ij' rj        v m     ij       m     ij       m     ij'    J 

(m = 1 to 2) 

From Eq. (33), the solution at time level k = 3 can be computed from solutions 

at the previous time steps.    This process will continue until the solution sought 

is obtained. 

A program based on the above formulation has been developed and used 

first to solve a steady problem which is obtained as the limiting flow for large 

times with suitable initial conditions.    Presently the initial conditions are ob- 

tained by placing a leaky profile in the desired uniform stream and then im- 

pulsively turn off the leakiness at zero time.    That is, the flow is assumed to 

be uniform for t < 0, and is required to satisfy the tangential boundary condi- 

tion on the airfoil for t > 0.    With a 6% thick circular arc airfoil, convergent 

results are obtained for M     = 0.806 (subcritical) and M     = 0.84 (barely crit- 
00 00 

ical).    However, as M     increases to 0.86 (critical), the sequence of unsteady 
00 

flows oscillates from one time step to another and diverges.    This phenomenon 

persists whether the improper downwind influence is removed or not. 

In attempting to resolve the above problem, several numerical experi- 

ments (variations of the Galerkin approach) were then carried out for the 

steady transonic equation. 
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As found previously  (Ref. 2) the transonic equation  should not be cast 

into an equation of the Poisson type and treated as an elliptic problem.   Any 

numerical   scheme   so   constructed   would   inhere   in   it   the   improper   down- 

wind influence upon upwind solution in the supersonic region.    To eliminate 

this, it is more convenient to apply the Ccilerkin approach directly without 

integration by parts for the term involving 0        .    However, in order to obtain 

a. better conditioned coefficient matrix, integration by parts for the 0 term 
* y y 

is carried out.    This approach was also found unsuccessful in obtaining a con- 

vergent solution for the case M     = 0.861. 
00 

Another attempt was to add a term simulating numerical viscosity for 

elements in the supersonic region.    The term added is 

otAX^ 
XXX 

(34) 

In the finite difference approach, AX is the spacing between two grid points. 

When the transonic equation is discretized by s» second order central differ- 

ence formula, this term is capable of eliminating the downwind influence 

(Ref. 14).    In our formulation, AX is taken to be the X   dimension of the ele- 

ment.    Again, no satisfactory results wereobtained for the case of M     = 0.861, 
oo 

Other possibilities for modifymj' the conventional Galerkin approach to 

solve the transonic equation remain to be exploited.    However, work in that 

direction could be time consuming and expensive.    Based on its success with 

solving the steady transonii  problem, the least squares approach was there- 

fore investigated to solve also the unsteady transonic equation. 

The Least Squares Approach 

An approximate solution for the perturbed velocity potential can be 

assumed in the form 

i    =   N. M,   0k 

i      k    i 
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in which N.   = shape functions in space, M.   = shape functions in time, and 
k 1 

4>.   = unknown parameter corresponding to node i and time level k.   Shape func- 

tions in space generally depend on the particular element being used as 

discussed in Section 2.    The shape functions in time presently used are the 

quadratic approximating functions shown in Fig. 9. 

Upon substituting Eq. (35) into Eq. (33), the residual  R   can be expressed 

in terms of the unknown parameters directly.    That is. 

R    =   IM,   (aN. +N.       )-MZ   (2M.       N.       + M.    t    N.J^ (36) 
|     k j,xx j,yy' oo  v        k.t     j.x k, tt     jy j 

where a is approximated by 

a   =   a + bM, N        0 

The residual can be rewritten as 

R    =   (A1^ + B*) ^ 
i j      j 

(37) 

where 

A.    =   M.   (a N . + N.       ) 
J k v       j,xx j, yy' 

Bk .,2 
?   = - M     (2 M.    . N,      + M.    ., N.) j oo x        k,t     j,x k,tt     y 

The integral expression of 

/// 
R    dx dy dt 

is minimized with respect to the unknown parameters at time level k = 3, 

with integration being taken over the physical space and to the time level 

k = 3. 
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M 

M,(t) 

Figure 9 - Shape Functions in Time 
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That is 

or 

j 

/// 
OR 

8*f 
R dx dy dt    =0 (38) 

Letting 

W. -*~    =   A3 + B3 + (M,   N.        ^k) bM. N. ^3 i i       v    k     J.XX^J'        3     i,x 

the resulting system of algebraic equations becomes 

(39) 

f/J 'i K '«Nj.» + "j, /y' " Mk <2 "k.t "j.K + M
k,tt "j») 

<).  dx dy dt   =   0 (40) 

3. 
Equation  (40) provides us with a recurrence relation to solve for 4>- in terms of 
12 ^ 

i.  and i. . 
J J 

A program based on Eq. (40) was developed and used to check out first 

the steady state solutions.    Through these numerical experimentations, it was 

found that, in order to stabilize the time marching scheme, emphasis must be 

placed on the last time step for terms involving space derivatives only, i.e., 

R'    =   (a'N.^-hN.^^-M^ZM^^.^+M^^N.)^ (41) 

with 

a'   =   a + b N        ^ P.x rp 

instead of Eqs. (36) and (37).    Such modifications are motivated by observing 

the implicit finite difference scheme   for the wave equation, 

*tt-*   *xx   =   0 
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Take a pivoting point (i, j), (i  denotes  x  and  j  denotes  t), assume mesh size 

in   x   is   k  and in  t   is   h, then the difference equation is 

h2 k2 
UJ_ (44) 

Through Von Newmann's stability analysis by Fourier series (Ref. 15), this 

equation can be shown to be unconditionally stable for all \, h and  k.    An 

immediate observation is that i      is differenced in the x direction at the xx 
last time step.    Since the left-hand side of the finite difference equation (44) 

is in fact the residual at a discrete node, the analogous residual for the pre- 

sent transonic equation via finite element approach therefore is Eq. (41). 

Note that M    ^ in Eq. (36) is replaced by (M.  + M    + M,) ^ in Eq. (41), 

which reduces to 0.,   since M. + M^ + M_ = 1. 

With the residual established, the corresponding weighting functions 

can be readily determined, thus leading to the required system of algebraic 

equations. 

It remains to argue that 

AR   =   R - R'   = MZ ^j *j) +MJ -^K yy 

+  M. (a*f - a'^?) + M- (a*2 - a'*? 
I    1       J j 2       J J 

+ M- (a- a') ^?1N. 3 J J   J.xx 

(45) 

If steady flow is approached, 

03   =   ^2   =  ^j, a   =  a'. =^ AR   =   0 (46) 
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Therefore this approach is appropriate for computing steady flow.    In this 

case, the role of AR seems to be the same as the numerical viscosity term 

introduced in the implicit finite difference scheme through truncation. 

Other aspects of the numerical approach are similar to what was de- 

scribed in Section 2.2 for steady flew, except that the boundary conditions 

imposed along the  branch cut are noticeably different.   Also, a process of 

marching in time is taken, instead of  successive  iterations  used  on the 

steady counterpart. 

Along the branch cut (vortex sheet in unsteady flow), Eqs. (26) and (27) 

must be imposed to ensure the continuity of pressure and downwash. To im- 

pose the first condition,   Eq. (26),   for a pair of nodes along the branch cut,   the 

two finite element equations generated originally for ^       and ^        are properly .x ,x 
combined to yield one equation,  while the equation for $       is replaced by the , x 
following equation,   evaluated at time level t = t_: 

+(3) (3) (3) (3) (2)       .(2) (1)       (1) 

*,x   " ^,'x   +M3,t(*        "*"     )=M2,t(*"      '*       )+Ml.t(*'     "♦        )        (47) 

Where  M  is the shape function in time and the superscripts denote the time 

steps, while solutions for the first and the second time steps are known. 

Equation (27) can be imposed in a similar fashion.    This condition, 

within the limit of small perturbation assumption, will ensure flow just above 

and below the branch cut behaves as an unsteady vortex sheet, and in the 

steady case this vortex sheet will vanish eventually. 

3.     NUMERICAL RESULTS 

As mentioned earlier, the Galerkin approach was found to be invalid 

for computing critical transonic flows and hence abandoned.    As an alterna- 

tive, the least squares approach was pursued and applied to compute both 

steady and unsteady transonic flows.    Results obtained thus far indicate that 

the least squares approach is generally very satisfactory.    Computations 

35 

■ 

^^„.^ ! : . -J „._-._^i&_^  „^1 ^■■l..-..t—..1-  1^ MMiiliif":'"'aii1'if1iliiltfii>tlliii'l'':-'1-",;'*''' ' - 



"muMSf^m ,^^^?^^^i^-T.,.u.,.r«4Pi>M<liJi'-i-w'+-.)™ww ^^wef^gm^smwMtJLW.iwiiiMfKma^iK0^B^BBmmK^'K 

performed using the unsteady code are presented and discussed in the follow- 

ing. 

Steady Transonic  Plow over a 6% Thick Circular Arc 

In order to debug the unsteady code and study the feasibility of the pre- 

sent approach, steady state solutions for flow over a 6% thick circular arc 

airfoil were first computed and compared to those obtained previously by 

solving the steady transonic equation.    The mesh used in the computations is 

shown in Fig. 10, where the typical time step used is At =  1. 

The case of M     = 0.861 (barely critical) was compuced first.    Conver- 

gent solutions was obtainable whether or not an improper downwind influence 

up. the solution at an upwind station in the supersonic pocket is discarded or not, 

The two solutions are unnoticeably different.    This is obviously because, for 

M     = 0.861, the local supersonic region is very small and therefore the effect 

of the improper upwind influence is insignificant.    Shown in Fig. 11 are results 

eliminating the downvind influence and compared with  experimental  results 

(Ref. 13). 

For cases with higher freestream Mach number, however, numerical 

solutions corresponding to with and without downwind influence in the spatial 

direction are definitely different.    Solution with improper downwind influence 

removed produces a shock wave, although somewhat smeared; while the other 

case yields a shockless solution with flow expanded and recompressed smoothly 

throughout the supersonic pocket.    The latter results had also been observed 

in the steady equation formulation, when downwind influence was retained and 

Newton-Raphson's method was used to solve the nonlinear algebraic equations. 

Nevertheless, solution of the latter type (shockless flow) is considered to be 

hydrodynamically incorrect due to considerations of entropy production through 

shocks.    For this reason, the scheme with improper downwind Influence re- 

moved in the supersonic region is adapted.    Results for the cases of M     = 0.909 
oo 

and M     = 0.966 are also shown in Fig. 11 and compared with experimental data 

due to Knechtel (Ref. 13).    It is seen that the shock position for the two cases is 
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Figure  10 - Finite Element Representation for Flow past a Thin Airfoil 
in a W'nd Tunnel (120 Elements,  150 Nodes) 

37 

Jiti-Wt'Hiimirmi I-TT 1^i»a1.^»M.^di^.ij.^^^^ ■miMit-i».,, .....^^^.jin^iiaMittam,,,,,;,^^.^., ^ , _^ mmjJ»^.,l.i^efrrai|(|.|.tl|1 aM,^.^wafai«M«i^irlTtllil|i|| 



»t)W«'Wl"^p|Jij)^MI)p^ vw^mammimmimBimmiiimsmmmma» 

X Least Squares finite Element (ISO nodes) 

O Least Squares Finite Element (224 nodes) 

Experimental - Knechtel (Ref. 13) 

x/c 

Figure  11  - Comparison of Chordwise Pressure Distribution for a 6% Thick 
Circular-Arc Airfoil (a = 0 deg) 
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somuwhal behind that found in experiment, a fact also observed in finite 

difference calculations.    In our numerical scheme, shock continuity has not 

been treated as auch, and the shock was smeared at least within the width of 

the element where the shock is supposed to be located.    A simple way to obtain 

a better resolution is to refine the mesh in the recompression region. 

On attempting to refine the solutions for M     = 0.909 and 0.966, a mesh 
00 

layout depicted in Fig. 12 was used.    The results for the case of M     = 0.909 
oo 

agree very well with those obtained from using the coarser mesh, except for 

flow after the shock, where recompression is stronger for the finer mesh. 

This is expected, when the mesh is refined   the (smeared) shock is confined 

within a smaller region, and better resolution should result.    For the case 

of M     = 0.966, the shock was also found to be closer to the trailing edge, com- 
00 

pared with the solution obtained using the coarser mesh.    The present results 

appear to agree with Murman's recent finding (Ref. 14) about embedded shock 

over airfoil.    He observed that when FCR (fully conservative relaxation) is used, 

the solution gives stronger shocks that are farther aft on the airfoil compared 

with that using the NCR (not fully conservative relaxation).    For reference, 

his discussion on why NCR agrees better with experimental results than FCR 

may be consulted. 

Unsteady Transonic Flow over a NACA 64 A006 Airfoil 

To demonstrate the applicability of the present approach, several cases 

of unsteady transonic flow over a NACA 64 A006 airfoil were studied.    The 

airfoil is assumed at zero incidence but with a quarter chord flap executing 

harmonic motion.    The cases studied include 

M 
0 

M 
0 

M 
0 

M 

00 

00 

oo 

0.794, k = 0.064 

0.804, k = 0.253 

0.901, k = 0.057 

0.903, k = 0.228 

■*     ■ wmmm • 
mm 
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I 

The element mesh used is shown in Fig. 13, consisting of  165 elements with 

198 nodes.    For each cycle of oscillation,   16 time steps were used in the 

computations.    For the two supercritical cases, M     = 0.901 and 0.903, unlike 
00 

their steady counterparts, the special "one-sided assembly" scheme was not 

necessary in the computations, and harmonic solutions are apparently obtained 

in two cycles of computations. 

■I 

N 

Numerical results including  the unsteady pressure jump at typical 

stations (x/c  = 0.725 and 0.775) and the amplitude of the unsteady pressure 

difference over the airfoil are depicted and compared in Figs. 14 through 25. 

In these figures, the pressure is normalized with respect to the angle 9, the 

amplitude of flap oscillation.    The experimental data are reported by Tijdeman 

and Schippers (Ref. 16).    In general the agreement for predicted results and 

experimental data is very good.    In particular, results for the typical stations 

(x/c = 0.725 and 0.775) near the hinge point show excellent agreement in both 

magnitude and phase angle.    The amplitude of the unsteady pressure difference 

over the airfoil   is al;,'i depicted with the comparisons made.  Again, the experi- 

mental data have been converted to yield the value of amplitude.    The dashed 

line in the figure corresponds to results obtained earlier by an approach de- 

veloped for NASA-Langley (Ref. 6), assuming the unsteadiness tobe a small 

perturbation to the mean steady flow.    Note that the results obtained by 

the two theoretical approaches agree very well over most parts of the airfoil; 

and agreement between present results and experimental data is very good for 

the aft half of the airfoil.    Close to the leading edge, both finite element solu- 

tions appear to under-predict the amplitude of unsteady pressure jump. Many 

factors could attribute to this fact.    The small perturbation assumption cur- 

rently used requires that flow be only slightly perturbed from uniform flow. 

Consequently, the flow behavior in the vicinity of a leading edge stagnation 

point cannot be correctly represented with such an assumption.  The coarse- 

ness of the present mesh may also cause inaccuracy, especially near the 

leading edge.    Furthermore, the assumption of no disturbance along the outer 

boundary of the mesh as used in the present computations is considered to have 

a tendency to suppress the development of a pressure jump, especially for 

the leading edge region, where no oscillation is taking place. 
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Figure 14  - Time History ot Unsteady Pressure at x/c = 0.725 
(M     = 0.794, k = 0.064) 
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Fißure  15 - Time History of Unsteady Pressure at x/c - 0.775 
(M    = 0.794. k = 0.064) 
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Figure  16 - Amplitude of Unsteady Pressure on Airfoil 
(M      = 0.794, k = 0.064) 
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Figure  17  - Time History of Unsteady Pressure at  x/c = 0.725 
(M     = 0.804, k = 0.253) 
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Figure 18 - Time History of Unsteady Pressure at x/c = 0.775 
{M    = 0.804, k = 0.253) 
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Figure 19 - Amolitude of Unsteady Pressure on Airfoil 
(M    = 0.804, k = 0.253) 
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Figure 20 - Time History of Unsteady Pressure at x/c = 0.72 5 
(M    = 0.901, k = 0.057) 
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Figure 21  - Time History for Unsteady Pressure at x/c  = 0.775 
(M    = 0.901, k = 0.057) 
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Figure 22 - Amplitude of Unsteady Pressure on Airfoil 
(M    = 0.901, k = 0.057^ 

oo 

50 

»;^■,■i^'■^"""-'-■^^■:•^--',' ^.^^^Ha,. ....:.-, : .,.>,...,,...;;, ■l---*..^,:-<^l*«MMMimM^,,.,.lii^^  -'■'-"■"i lilht(t»f8lf ■"■aijitfiitoWÜ 



fggf^mglimQmmmt^fwmsimmB*^^ 

—   Tijdeman & Schippers Il6| 

O   FEM (unsteady cede) 

10 
o A 

o /   \ 

5 — 
o /         \ 

/           0 \ 

0/                    I 
AC„.,  o /                 I 

pu  " 
T /                         \      2T 

1                       0 I 

-5 — 
I                            O \ 

o\ 

O 

/ 
-10 — /^ 

-► t 

0oO 

Figure 23 - Time History of Unsteady Pressure at x/c = 0.725 
(M    = 0.903, k = 0.228) oo 
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FLgure 24 . Time History of Unsteady Pressure at x/c = 0.775 
(M     = 0.903, k = 0.228) 
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It is seen from the predicted results that the present approach is suited 

for computing unsteady transonic flows and steady flow as well.    For an airfoil 

undergoing harmonic motion, oscillatory solution is obtainable in two to three 

cycles, and requires only moderate computation time.    For the mesh presently 

used, marching in time one step forward requires approximately 40 seconds 

CPU time on a Univac  1108 computer, and each case requires about 10.5 

minutes for completing computations for one cycle, with 16 time steps.  As 

the present computer program has not been optimized yet, some reduction in 

computation time is still possible. 

,. 
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SECTION IV 

CONCLUSIONS AND RECOMMENDATIONS 

The work presented in this report represents an initial attempt toward 

developing a general numerical method for  computing steady and unsteady 

transonic flows over thin airfoils based on small disturbance theory.   Unlike 

other existing approaches for calculating unsteady transonic flows, the pre- 

sent numerical algorithm solves directly the unsteady transonic equation 

with both time derivative terms retained in the computations.    Thus the pre- 

sent algorithm can be applied to compute a much wider class of transonic 

flow problems, including steady, oscillatory or transient solutions, either 

with or without angle of attack.    For oscillatory flow, no assumption is made 

regarding the oscillating frequencies, nor is the unsteady perturbation neces- 

sarily to be small compared to the mean steady solution. 

The present numerical algorithm is developed using the finite element 

concept in conjunction with the  least squares method of weighted residuals 

applied to both space and time.    Also, schemes for handling mixed flows and 

problems involving an infinite domain have been developed and implemented 

in the present numerical method.    These newly developed schemes, together 

with the advantages offered by the finite element technique which includes 

great flexibility in mesh arrangement, ease with implementing higher order 

approximations, and its effectiveness in treating complex geometry and 

boundary conditions, etc., make the present approach feasible and should 

prove to be definite assets in computing more complicated transonic flow 

problems. 

The developed procedures have been applied to solve several problems 

of steady and unsteady transonic flows over thin airfoils, and results obtained 

compare generally very well with experimental data and those obtained by 

other numerical techniques.    Regarding computational efficiency, only moderate 
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corriputation time is needed,  even the  most time consuming case requires 

only about ten minutes CPU time on a CDC 6600 computer.    These explora- 

tory studios well indicate the feasibility and applicability of the finite ele- 

ment approach for computing  steady and unsteady transonic flows.   However, 

as the effort to date has concentrated on investigating the best suited finite 

element approach, little consideration has been given to optimize the compu- 

tational efficiency and to certain details, such as more accurate treatment of 

the leading edge singularity and unsteady effects along the outer boundary. 

These refinements are apparently desiraole and certainly could be accom- 

plished.    In addition to these improvements, it is recommended that further 

study be pursued in the following areas; 

1 

a. Some studies need to be done on the effects of "non-conforming" versus 
"conforming" elements.    As is known,  the elements presently used are 
C^ continuous only at nodal points,  but not across element boundaries, 
which apparently violates   C^continuity between elements as nor- 
mally required.    Although our experiences and numerical results 
indicate that the use of "non-conforming " elements do not cause 
problems with convergence, as concluded in plate bending analysis, 
some studies on the effects of "non-conforming" versus "conforming" 
elements are apparently highly desirable and useful, considering the 
fact that the present problem is nonlinear and involves equations of 
the mixed elliptic-hyperbolic type.    "Conforming" elements do exist 
and could be readily implemented.    This study could be conducted 
concurrently with the development of a more sophisticated scheme for 
handling shock waves, such as shock-fitting. 

b. The procedures developed in this study could be extended without 
too much effort to treat problems involving multi-element airfoils 
and the cascade    problem.    As techniques for handling shock waves 
(by smearing) and Kutta conditions in the wake have already been 
developed and appear to work well for a single airfoil, the antici- 
pated major effort in solving the problem of multi-element airfoils 
and cascades would be to develop or implement some efficient 
scheme for solving a large system of algebraic equations, such as an 
out-of-core equation solver.    Alternatively, a scheme based on the 
concept of line relaxation, as extensively used in finite difference 
techniques, could be developed to cope with the problem. 

c. It is desirable and apparently feasible to develop a finite element 
algorithm to solve the nonlinear full potential equation, as the versa- 
tility of the method can be more effectively utilized for such a prob- 
lem.    Another possibility is to solve the two-dimensional unsteady 
Euler equations directly and at the end include also the viscous effects. 
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Finite difference relaxation techniques for solving these equations 
have already been developed; however, tremendous computation 
time is usually required even for solving a two-dimensional prob- 
lem.    In the light of fully utilizing the advantages offered by the 
finite element method, such as great flexibility in mesh arrange- 
ment, ease with implementing higher order approximations, and 
its effectiveness in treating complex geometry and boundary con- 
ditions, the method could lead to higher computational efficiency 
than other existing numerical techniques.    Through these studies, 
the feasibility of using finite element methods to solve the three- 
dimensional and more difficult transonic flow problems can also 
be assessed. 

i\ 
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